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Abstract: The automakers are continuously interested in noise vibration and harshness solutions for high 
quality vehicles in general and quieter passenger cabins in special. In this paper the modal parameters of 
a car windshield are determined by using experimental modal analysis. The frequency response functions 
have been measured by using impulsive technique. An impact hammer has been used to generate the 
impulsive force applied at various locations evenly spread on the windshield surface. A fixed              
mini-accelerometer has been used to measure the structure response. Starting from the set of FRF 
functions of free-free conditions, the Least Square Complex Exponential parameter estimation method 
implemented in LMS Test.Lab software has been used to extract the modal parameters. The validation 
phase sustained the correctness of the modal parameters found. Key words: experimental modal analysis, 
frequency response function, impulse response, modal parameters, windshield. 
 

1. INTRODUCTION   
  

The automakers are continuously interested 
in Noise Vibration and Harshness (NVH) 
solutions for high quality vehicles. Hence, ways 
to reduce structure-born noise, road and wind 
noise entering the passenger compartment are 
observed. 
 Managing the physical characteristics of the 
car windshield is important in the quest for 
quieter passenger cabin, for offering high 
quality acoustic environment for occupants, in 
the effort of manufacturing better automotive 
components and to offer occupant safety and 
pedestrian protection. A new demand for 
quieter vehicles is to facilitates the use of 
telematics within the cabin, including voice-
activated technology and mobile phones. The 
dynamic range of speech is about of 30dB for 
each third octave band from 200 to 6000 Hz. 
Reducing noise contributes to increasing speech 
intelligibility as well. Acoustic energy can be 
easily transmitted through the vehicle 
windshield comparing with the rest of the 
interface to the exterior. When running with 
high speed, air pressure variations are 
registered at the windshield level causing glass 
to radiate noise in the compartment.  

 In the present study a standard laminated 
glass windshield with two layers of glass and 
an inner layer of polymer is considered. The 
inner layer, often an elastomeric polymer called 
polyvinyl butyral (PVB), is pressed under heat, 
between the two sheets of glass. The Young 
modulus of the PVB is much lower than that of 
the glass. In the PVB viscoelastic layer an 
important transverse shear is induced. This 
transverse shear introduces damping. The PVB 
layer damps vibrations, prevents parts of the 
glass to spread around and offers retention to 
the occupant in case of accident [4].  
 Regarding the structure, one can mention 
acoustic windshields having five layers: two 
exterior layers of glass, two intermediate layers 
of polymer and one inner layer of an acoustic 
polymer [2]. The inner layer has the function of 
damping frequencies specific to the acoustic 
range, hence protecting the vehicle cabin. 
   
2. EXPERIMETAL MODAL ANALYSIS   
  
2.1 General aspects  

Experimental modal analysis (EMA) is the 
process of extracting modal parameters of a 
mechanical structure starting from vibration 
data measured on the structure. When starting 



 

 

from frequency response functions (FRFs) the 
extraction process is called frequency response 
domain analysis. FRF is a description of the 
input-output relationship as a function of 
frequency between two degrees of freedom of 
the structure. When the impulse responses (IRs) 
are used, the approach is called time domain 
modal analysis.  The mathematical model in 
case of frequency domain modal analysis is an 
analytical expression of a FRF best fitted with 
the measured FRFs. In reality a structure has an 
infinite number of DOF and poles.  
 Lightly damped modes have narrow peaks in 
frequency domain described by a few points, 
hence the modal parameters are not so easy to 
be determined. On the contrary, in time 
domain, the signal of the impulse response has 
long duration decay and is easier to be identified. 
 Over the last years, techniques for parameter 
identification only from output data have been 
developed. One can mention Auto-regressive 
moving parameters (ARMA), Natural 
extraction techniques (NexT) or stochastic 
realization methods. 
 
2.2 Least-square complex exponential 
(LSCE) parameter estimation method 

The LSCE approach will be shortly recall 
[3]. LSCE method is a time domain approach 
which uses the impulse response functions IRFs 
of a multi degree of freedom system to estimate 
the complex poles and residues. The measured 
set of FRFs are expressed by relations (1). 
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These relations are transformed into the 
IRFs by inverse Laplace transform, resulting: 
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 IRFs are sampled at equally spaced time 
intervals dt: 
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After the substitution: 
dtksk

r rez ⋅⋅=             (4) 
we obtain: 
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where dt)(khh ijk ⋅=  are values known from 
measurements (real values), A are the residues 
(complex values) and z are complex values 
because the poles s are complex.   
 Considering that z are roots of a polynomial 
with real coefficients, we obtain: 
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Using the available data from IRFs 
(measured data) we are able to estimate the 
coefficients β found in relation (6). In relation 
(5) multiplying each equation with a specific 
coefficient β and adding all equalities together, 
yields (7). 
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We can interchange the summations: 
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In the right side of the equation we have a 
summation which is zero when zr is a root of 
the polynomial mentioned in relation (6). For 
these z values, the right member of the equation 
is null, resulting: 
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 By using the relation (9) and 2n sets of 2n 
samples of the known IRFs, we can estimate 
the set of β coefficients. Dividing by β2n we 
obtain the value 1 for the coefficient of h, 
placed on the right side of each equation. 

We get 2n linear equations from which the 
coefficients βi can be estimated: 
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 For the least square solution the number of 
equations (rows in the matrix equation) can be 
greater than the number of unknown 
coefficients. 

The data samples hi, i= 0 ,…,4n-1 in 
each row are evenly spaced in time. 

Once the β coefficients are known we can 
solve the equations (6) for the unknown z roots:  
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From these and considering the expressions 
of the poles: 
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can be extracted the natural frequency and 
damping ratio for each mode (12): 
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The derivation of the system mode shapes 
resides in finding residues A: 
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Further details of the LSCE method can be 
found in references [1] and [3]. 
 
2.3. Measurement set-up 

The windshield has been suspended on 
elastic cords trying to minimize the stress in the 
structure and to allow the rigid body modes 
movement. 

Experimental modal analysis by using 
impact testing has become largely known as a 
fast and economical mean of finding modal 
parameters of a structure. 
 For the FRF measurement, the impulsive 
method has been used assuming the symmetry 
of FRF matrix. The impact hammer was 
connected to the first channel of an LMS 
acquisition system and was used to excite the 
structure in 47 locations (roving hammer).       

A PCB mini-accelerometer of 1.5 g placed into 
the reference point is connected to the second 

channel of the acquisition system in order to 
record the response of the structure. A column 
of 47 FRFs of the transfer matrix has been 
built. The schematic overview of the 
experimental test set-up and FRF derivation is 
shown in figure 1. 
 
2.4. Modal parameters estimation 

For the parameter estimation the LMS Test-
Lab dedicated software has been used. The 
identification process is starting from a set of 
47 FRFs measured on the windshield. The 
impact locations spread on the windshield 
surface can be seen in figure 2.  

When assessing the poles, the frequency 
band of analysis should not be very wide. It is 
advisable to select several consecutive narrow 
bands instead of a large one in order to evaluate 
the parameters of the band of interest. When the 
estimation approach is based on a time domain 
technique and we are starting from FRFs, each 
frequency band is advisable to contain a power 
of two frequency lines. This will ease the 
conversion of data from frequency domain to 
time domain. In order to minimize the out of 
band effects the FRFs values at the limits of the 
band should be small (choosing local minima).  
 The estimation of the physical pole number 
can be done by counting the peaks in the FRF 
amplitude function. A frequently used method 
is to visualize the SUM of the measured FRFs 
(amplitude) and to count the peaks. Large peaks 
indicate large total modal displacements, while 
small peaks indicate small total displacements 
or local modes of vibration. In general the 
number of peaks will be less than the roots 
number, one cause being the fact that a multiple 
root is associated to one peak.  

Fig. 1. Experimental set-up 

Fig. 2. Impact locations on the windshield 



 

 

The Mode indicator function (MIF) can help 
in counting the poles. The local minima of the 
MIFs indicate the resonances of the normal 
modes of the structure.  
 The global parameter stabilization diagram 
for the first frequency band is shown in figure 
3. This diagram is a good tool to find the 
physical poles. 

An important aspect is to select a correct 
model order. Some of the resulting eigenvalues 
do not have a physical meaning. These 
eigenvalues are in general caused by 
mathematical effects or noise and result from 
the forced fulfillment of the estimated model 
order. The Stabilization diagram is used to 
bring together the poles coming from 
successive analysis, each analysis with a 
different model order. The horizontal axis of 
the diagram registers the pole frequencies and 
the vertical axis the solution order. A pole in 
the diagram is indicated by a specific character 
(like s for stable pole). 
 After the pole selection is completed, the 
modal shapes are calculated by using the 
complex residues [9]. The first 14 complex 
poles, damping and damped frequencies are 
listed in Table 1. 

A simplified geometry, created in order to 
visualize the mode shapes, can be seen in figure 
4. 

 
 
 
 
 
 
 

In figures 4,5,6 and 7, the first eight mode 
shapes are depicted and grouped in pairs. The 

first mode is the first bending of the structure, 
the second is a twist and so on.  

Table 1 
Complex poles 

Mode 
# 

Pole  
Imag 

Pole 
Real 

Damping 
(%) 

Frequency 
(Hz) 

1 103.945 -0.824 0.79 16.54 
2 113.274 -2.158 1.90 18.02 
3 247.991 -3.220 1.29 39.46 
4 291.63 -2.698 0.92 46.41 
5 450.528 -5.810 1.28 71.70 
6 469.043 -4.844 1.03 74.65 
7 575.234 -6.815 1.18 91.55 
8 684.978 -10.91 1.59 109.0 
9 734.834 -9.198 1.25 116.9 

10 943.156 -11.60 1.22 150.1 
11 975.039 -11.63 1.19 155.1 
12 996.846 -6.456 0.64 158.6 
13 1129.96 -16.33 1.44 179.8 
14 1181.59 -17.30 1.46 188.0 

 

 
 A good correlation has been ascertained 
when superposing a measured and the 
associated synthesized frequency response 
function. A typical pair of measured FRF 
versus synthesized FRF is shown in figure 8.  

Our estimation of the poles is observing the 
measured frequency band, hence many poles 
will be neglected. Each measured FRF is 

Fig. 3. Stabilization diagram 

Fig. 4. Windshield reprezentation 

Fig. 5. Modes #1 and #2 

Fig. 6. Modes #3 and #4 

Fig. 7. Mode shapes #5 and #6 



 

 

containing modal information of all modes of 
vibration including the modes not belonging to 
the frequency range of measurements. The 
difference between the measured FRFs and the 
estimated FRFs is the error function. We are 
trying to identify the modal parameters of the 
structure by minimizing the error function. 

A series of parameters, such as Modal scale 
factors (MSC), Modal assurance criterion 
(MAC), Mode complexity, Modal phase 
colinearity (MPC), Mean phase deviation 
(MPD), were used to validate the accuracy of 
the modal model (frequencies, damping values, 
mode shapes and participation factors).  

The MAC matrix is depicted in figure 9.  
The complex modal vectors are linear 

independent since the off diagonal MAC values 

are small. MPC, MPD, and Mode participation 
(MP) are listed for each mode of vibration in 
Table 2. From MPC and MPD we conclude that 
the modes are lightly damped and almost real. 

The scatter parameter is low for all first 14 
modes. The modal participation of different 

modes in the analysis frequency band can be 
found in column MP of the table. 
 

Table 2 
Validation parameters 

Mode
# 

Frequency
(Hz) 

MPC 
(%) 

MPD 
(°) 

MP 
(%) 

1 16.54  98,95 6,07 22,97 
2 18.02  99,90 1,93 34,65 
3 39.46  99,96 1,01 13,38 
4 46.41  99,75 2,87 3,11 
5 71.70  99,93 1,56 4,71 
6 74.65  99,94 1,35 4,57 
7 91.55  99,93 1,45 6,33 
8 109.01 99,84 2,28 4,18 
9 116.95  99,9 1,88 1,42 
10 150.10  99,20 5,40 0,77 
11 155.18  98,56 7,18 0,72 
12 158.65  97,28 10,20 0,16 
13 179.83  97,39 9,68 1,15 
14 188.05  98,69 6,95 1,82 

 
 
3. CONCLUSION  
  

The modal model described by the damped 
natural frequencies, the damping values, mode 
shapes and participation factors has been 
determined for a standard laminated glass 
windshield with two layers of glass and one 
PVB viscoelastic layer. The identification 
technique has started from the FRFs 
measurement on the structure on free-free 
conditions, by using the impulsive technique 
and a roving hammer. The impulse response 
functions (time domain) are calculated and the 
modal parameters are estimated by using the 
Least Square Complex Exponential method. A 
set of specific parameters were used in order to 
validate the identified dynamical parameters of 
the structure. 
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Analiză modală experimentală aplicată unui parbriz de automobil. 

Rezumat: În lucrare sunt determinaţi parametrii modali ai unui parbriz de automobil prin analiză modală 
experimentală. Funcţiile de răspuns în frecvenţă au fost măsurate folosind tehnica impulsului. S-a ales o reţea de locaţii 
uniform distribuite pe suprafaţa parbrizului pentru aplicarea forţei impulsive cu ajutorul unui ciocan prevăzut cu senzor 
de forţă. Un miniaccelerometru a înregistrat simultan răspunsul la impact. Parametrii modali ai structurii (frecvenţele de 
rezonanţă, formele de vibraţie şi amortizările modale) au fost evaluaţi pe baza funcţiilor de răspuns în frecvenţă 
măsurate în condiţii de suspendare elastică a structurii şi folosind metoda LSCE implementată în produsul LMS 
Test.Lab. Rezultatele obţinute au fost validate pe baza unui set de parametri specifici. 
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